Autor: |
Dong, Li, Ding, Hairu, Shi, Guochun, Colucci, Stephen J. |
Předmět: |
|
Zdroj: |
EGUsphere; 10/6/2022, p1-31, 31p |
Abstrakt: |
The horizontal and temporal variations of static stability prior to blocking onset are characterized through composite analysis of twenty blocking events in the Southern Hemisphere. It is found that, along with a low potential vorticity (PV) anomaly formation, a local minimum of static stability in the upper troposphere and on the tropopause is achieved over the block-onset region when blocking onset takes place. By partitioning the isentropic PV into the absolute vorticity and static stability contributions, it is found that they account for roughly 70 % and 30 % of low-PV anomaly formation over the block-onset region, respectively. A static stability budget analysis revealed that the decrease of static stability in the upper troposphere and on the tropopuase prior to blocking onset is attributable to horizontal advection of low static stability from subtropics to midlatitude as well as the stretching effect associated with upper-level convergence over the block-onset region, with the horizontal advection forcing being the primary contributor. On the other hand, the vertical advection of static stability tends to oppose the decreasing static stability through advecting more stable air downward such that it stabilizes the local air over the block-onset region. Furthermore, the direct effect of diabatic heating is negligible as its magnitude is generally an order of magnitude smaller than other effects in the static stability budget. Nevertheless, the indirect effect of diabatic heating, manifested as the advection of low static stability by diabatically forced upper-tropospheric outflow, greatly favors blocking onsets by destabilizing the air upstream block-onset region. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|