Coupling of ferroelectric and valley properties in 2D materials.

Autor: Zheng, Jun-Ding, Zhao, Yi-Feng, Tan, Yi-Fan, Guan, Zhao, Zhong, Ni, Yue, Fang-Yu, Xiang, Ping-Hua, Duan, Chun-Gang
Předmět:
Zdroj: Journal of Applied Physics; 9/28/2022, Vol. 132 Issue 12, p1-20, 20p
Abstrakt: Two-dimensional (2D) valleytronic materials are both fundamentally intriguing and practically appealing to explore novel physics and design next-generation devices. However, traditional control means such as optic pumping or magnetic field cannot meet the demands of modern electron devices for miniaturization, low-dissipation, and non-volatility. Thus, it is attractive to combine the ferroelectric property with valley property in a single compound. In this paper, the recent progress of ferroelectric-valley coupling is reviewed. First, we briefly recall the development of valleytronics in the past several years. Then, various structures demonstrating ferroelectric-valley coupling, including heterostructures and intrinsic materials, are introduced. Subsequently, we describe ferroelectric-valley coupling in sliding and adsorption system and the unconventional ferroelectricity in the moiré system. Finally, we discuss the research status and outlook. We hope that this perspective will be helpful to bridge the gap between valleytronics and ferroelectrics in 2D materials and inspire further exciting findings. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index