Autor: |
Alemam, Asem, Al-Widyan, Mohamad I. |
Předmět: |
|
Zdroj: |
Journal of Sustainable Development of Energy, Water & Environment Systems (JSDEWES); Sep2022, Vol. 10 Issue 3, p1-16, 16p |
Abstrakt: |
Like most other similar institutions in Jordan, Jordan University of Science and Technology relies on a diesel-fired boiler that supplies a district heating system for space heating on campus. Different solar collector area scenarios were considered for both evacuated tube collector and parabolic trough collector technologies. The MATLAB package was utilized, and a code was developed using hourly irradiance and ambient temperature data which represented the average values for the last three years. The results show promising benefits at all levels. Technically, a high solar fraction of 0.84 can be achieved without the need for energy storage. Environmentally, potential reduction in carbon dioxide emission of 1,600 tons can be realized annually. Economically, the discounted payback period was calculated for each case studied. It turned out that the best value was 3.4 years for the case of 4,000 m2 evacuated tube collector and that parabolic trough collector technology is superior to evacuated tube collector technology although it has a higher initial cost. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|