Abstrakt: |
Drying processes including solar, oven, and refractance window were studied to determine their influence on the drying behavior of jackfruit slices and properties of resultant jackfruit powders. The loss of sample mass, converted to the ratio between the water content at time t and the initial water content (moisture ratio), was used as the experimental parameter for modelling drying processes. Fifteen thin layer drying models were fitted to the experimental data using nonlinear regression analysis. Based on the highest R 2 and lowest SEE values, the models that best fit the observed data were Modified Henderson and Pabis, Verma et al., and Hii et al. for RWD, oven, and solar drying, respectively. The effective moisture diffusivity coefficients were 5.11 × 10 − 9 , 3.28 × 10 − 10 , and 2.55 × 10 − 10 for RWD, oven and, solar drying, respectively. The solubility of freeze-dried jackfruit powder (75.7%) was not significantly different from the refractance window dried powder (73.2%) and was higher than oven-dried jackfruit powder (66.1%). Oven-dried jackfruit powder had a lower rehydration ratio and porosity. Differences in rehydration ratio and porosity under different drying methods could be explained by the microstructure. Fractal dimension (FD) and lacunarity were applied to study the structure and irregularities of jackfruit dried with the different methods. FD was significantly (P < 0.05) affected by the drying method. FD ranged from 1.809 to 1.837, while lacunarity ranged between 0.258 and 0.404. [ABSTRACT FROM AUTHOR] |