Persistent Ca2+ Current Contributes to a Prolonged Depolarization in Aplysia Bag Cell Neurons.

Autor: Tam, Alan K. H., Geiger, Julia E., Hung, Anne Y., Groten, Chris J., Magoski, Neil S.
Zdroj: Journal of Neurophysiology; Dec2009, Vol. 102 Issue 6, p3553-3562, 10p
Abstrakt: Neurons may initiate behavior or store information by translating prior activity into a lengthy change in excitability. For example, brief input to the bag cell neurons of Aplysia results in an approximate 30-min afterdischarge that induces reproduction. Similarly, momentary stimulation of cultured bag cells neurons evokes a prolonged depolarization lasting many minutes. Contributing to this is a voltage-independent cation current activated by Ca(2+) entering during the stimulus. However, the cation current is relatively short-lived, and we hypothesized that a second, voltage-dependent persistent current sustains the prolonged depolarization. In bag cell neurons, the inward voltage-dependent current is carried by Ca(2+); thus we tested for persistent Ca(2+) current in primary culture under voltage clamp. The observed current activated between -40 and -50 mV exhibited a very slow decay, presented a similar magnitude regardless of stimulus duration (10-60 s), and, like the rapid Ca(2+) current, was enhanced when Ba(2+) was the permeant ion. The rapid and persistent Ca(2+) current, but not the cation current, were Ni(2+) sensitive. Consistent with the persistent current contributing to the response, Ni(2+) reduced the amplitude of a prolonged depolarization evoked under current clamp. Finally, protein kinase C activation enhanced the rapid and persistent Ca(2+) current as well as increased the prolonged depolarization when elicited by an action potential-independent stimulus. Thus the prolonged depolarization arises from Ca(2+) influx triggering a cation current, followed by voltage-dependent activation of a persistent Ca(2+) current and is subject to modulation. Such synergy between currents may represent a common means of achieving activity-dependent changes to excitability. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index