Improved performance of Zn-doped SnO2 modified g-C3N4 for visible light-driven photocatalysis.

Autor: Liu, Wei, Kang, Qun, Wang, Ling, Wen, Lilian, Li, Zhaohua
Předmět:
Zdroj: Environmental Science & Pollution Research; Jul2022, Vol. 29 Issue 34, p51989-52002, 14p
Abstrakt: The low-cost composite of g-C3N4 modified by Zn-doped SnO2 nanoparticles was prepared for the first time in this work. The characterization results of XRD and SEM demonstrated that Zn was successfully doped into SnO2. The formed Sn-O-Zn bonds and interaction between the Zn-doped SnO2 sample and g-C3N4 in the composite were explored by FT-IR and XPS technologies. Photocatalytic degradation experiments showed that the as-prepared optimal composite photocatalyst displayed enhanced photocatalytic reactivity towards both dyes and antibiotics, which could degrade 85.6% of RhB and 86.8% of tetracycline within 30 and 90 min, respectively. The oxygen vacancies formed in SnO2 after Zn doping could capture the photogenerated electrons of g-C3N4, thereby promoting the separation of photogenerated electron-hole pairs, then more ·O2 and holes can be generated during the visible light-driven photocatalytic reaction, so that the composite of Zn-doped SnO2/g-C3N4 acquired higher photocatalytic activity and accelerated the degradation of target organics. Active species capturing experiments and ESR detection results also confirmed that ·O2 and holes were the main active species in the reaction process. This work developed a novel g-C3N4-based photocatalyst with no noble metal, low price, and high photocatalytic activity, which could provide a cost-effective and high-efficiency strategy for wastewater treatment. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index