Evaluation and characterisation of metal sorption and retention by drinking water treatment residuals (WTRs) for environmental remediation.

Autor: Arab, K. A. H., Thompson, D. F., Oliver, I. W.
Předmět:
Zdroj: International Journal of Environmental Science & Technology (IJEST); Aug2022, Vol. 19 Issue 8, p7727-7736, 10p
Abstrakt: Drinking water treatment residuals (WTRs) are wastes generated when water is clarified using aluminium or iron salts. They are increasingly being considered as a resource with potential reuse value, particularly in relation to soil or water remediation. Adsorption–desorption capacity of Al-based (Al-WTR) and Fe-based (Fe-WTR) materials was investigated here for Pb and Zn, both separately and in combination, as a preliminary trial to assess their utility for immobilising contaminant metals in environmental settings. Maximum adsorption observed at the highest test solution concentrations imposed (400 mg/L) was similar for each WTR type and each metal; Al-WTRs sorbed Zn at 3579 mg/kg and Pb at 4025 mg/kg, while Fe-WTRs sorbed Zn and Pb at 3579 mg/kg and 3980 mg/kg, respectively. Equilibrium adsorption data were tested against Langmuir, Freundlich, and Temkin isotherm models, which indicated a substantial reserve capacity for further Pb sorption and that multiple sorption mechanisms were involved. Subsequent desorption tests with 0.001 M CaCl2 solution indicated that > 89.76% of sorbed metal remained sorbed. When in solution together, both metals were strongly sorbed by WTRs, but a slight preference for Pb was observed. The results indicate that WTRs would be very effective immobilising agents if placed in contaminated soil or if used to treat contaminated waters. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index