Autor: |
Subasinghe, Lihil Uthpala, Wang, Chen, Gajjela, Satyanarayana Reddy, Law, Markas, Manikandan, Balasundaram, Balaya, Palani |
Předmět: |
|
Zdroj: |
Journal of Thermal Analysis & Calorimetry; Aug2022, Vol. 147 Issue 16, p8631-8649, 19p |
Abstrakt: |
We report here the heat generation and impedance characteristics of prototype 18650-sized sodium-ion cells using pristine Na3V2(PO4)3 (P-NVP) and modified Na3.2V1.8Zn0.2(PO4)3 (M-NVP) cathodes, hard carbon (HC) anode and an ether-based non-flammable electrolyte, 1 M NaBF4 in tetraglyme. Comparison of calorimetric studies performed on 18650-sized cells reveals lower heat generation in M-NVP versus HC compared to P-NVP versus HC owing to low internal resistance achieved as a result of Zn2+ doping in M-NVP. Both irreversible heat generation arose due to internal resistance and reversible heat generation caused by entropic changes in the electrode materials are elucidated. Furthermore, variation in subcomponents of internal resistance in both 18650-sized full cells and CR2016-sized half-cells is analysed by fitting electrochemical impedance spectra into equivalent circuit models. Individual contributions of anode and cathode to the impedance characteristics of the cells are determined by analysing impedance data of the half-cells using the distribution of relaxation times method. The results reveal lower diffusion resistance, as well as charge transfer resistance in M-NVP cells compared to P-NVP counterpart, accounting for the observed lower total internal resistance in M-NVP versus HC and thus lower heat generation in M-NVP versus HC cell than P-NVP versus HC cell. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|