Abstrakt: |
The radar equation is the fundamental mathematical model of the basic function of a radar system. Moreover, there are many versions of the radar equation, which correspond to particular radar operations, like low pulse repetition frequency (PRF), high PRF, or surveillance mode. In many cases, all these expressions of the radar equation exist in their combined forms, giving little information to the actual physics and signal geometry between the radar and the target involved in the process. In this case study, we divide the radar equation into its major steps and present a descriptive mathematical modelling of the radar and other related equations utilizing the free space loss and target gain concepts to simulate the effect of a white noise jammer on an adversary radar. We believe that this work will be particularly beneficial to instructors of radar courses and to radar simulation engineers because of its analytical block approach to the main equations related to the fields of radar and electronic warfare. Finally, this work falls under the field of predictive dynamics for radar systems using mathematical modelling techniques. [ABSTRACT FROM AUTHOR] |