An evolutionary Haar-Rado type theorem.

Autor: Rainer, Rudolf, Siltakoski, Jarkko, Stanin, Thomas
Zdroj: Manuscripta Mathematica; May2022, Vol. 168 Issue 1/2, p65-88, 24p
Abstrakt: In this paper, we study variational solutions to parabolic equations of the type ∂ t u - div x (D ξ f (D u)) + D u g (x , u) = 0 , where u attains time-independent boundary values u 0 on the parabolic boundary and f, g fulfill convexity assumptions. We establish a Haar-Rado type theorem: If the boundary values u 0 admit a modulus of continuity ω and the estimate | u (x , t) - u 0 (γ) | ≤ ω (| x - γ |) holds, then u admits the same modulus of continuity in the spatial variable. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index