Weak solutions for fractional p(x,·)-Laplacian Dirichlet problems with weight.

Autor: Ait Hammou, Mustapha
Předmět:
Zdroj: Analysis (0174-4747); May2022, Vol. 42 Issue 2, p121-132, 12p
Abstrakt: The main purpose of this paper is to show the existence of weak solutions for a problem involving the fractional p ⁢ (x , ⋅) {p(x,\cdot\,)} -Laplacian operator of the following form: { (- Δ p ⁢ (x , ⋅) ) s ⁢ u ⁢ (x) + w ⁢ (x) ⁢ | u | p ¯ ⁢ (x) - 2 ⁢ u = λ ⁢ f ⁢ (x , u) in ⁢ Ω , u = 0 in ⁢ ℝ N ∖ Ω , \left\{\begin{aligned} \displaystyle(-\Delta_{p(x,\cdot\,)})^{s}u(x)+w(x)% \lvert u\rvert^{\bar{p}(x)-2}u&\displaystyle=\lambda f(x,u)&&\displaystyle% \phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{in }\mathbb{R}^{% N}\setminus\Omega,\end{aligned}\right. The main tool used for this purpose is the Berkovits topological degree. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index