Abstrakt: |
The class of Qo-inhibiting fungicides (QoIs) act as respiration inhibitors by binding to the Qo center of cytochrome b. The longevity of these fungicides has been challenged by the selection of fungal sub-populations resisting high doses of QoI fungicides, with a G143A amino acid exchange in the cytochrome b target site identified as the most common cause of resistance. In contrast, the mechanism of alternative respiration, as another mechanism of fungal QoI resistance, has thus far not been affiliated with practical resistance. In the present study, azoxystrobin-resistant mutants of Magnaporthe grisea were generated and characterized. Emergence of these spontaneous mutants was facilitated when resting melanized mycelia were allowed to escape full inhibition by azoxystrobin. This escape was related to the intactness of alternative respiration, indicating that residual expression of this rescue mechanism was involved in the spontaneous emergence of target-site mutants. The two mutants characterized resisted high doses of the QoI, azoxystrobin, with resistance factors exceeding 1,000. Two different mutations of the cytochrome b gene were identified as exchanges of guanine, leading to a G143A or a G143S amino acid exchange. Resistance of both target-site mutants remained stable during four consecutive disease cycles in the absence of azoxystrobin. Several parameters tested to measure fitness penalties inherent to the mutational changes revealed that the G143A mutant was not compromised. In contrast, the conidia production of the G143S mutant was significantly lower under both saprophytic and pathogenic conditions of reproduction. [ABSTRACT FROM AUTHOR] |