Abstrakt: |
Environmental pollution and various diseases seriously affect the health of human beings. Photocatalytic nanomaterials (NMs) have been used for degrading pollution for a long time. However, the biomedical applications of photocatalytic NMs have only recently been investigated. As a typical photocatalytic NM, bismuth oxychloride (BiOCl) exhibits excellent photocatalytic performance due to its unique layered structure, electronic properties, optical properties, good photocatalytic activity, and stability. Some environmental pollutants, such as volatile organic compounds, antibiotics and their derivatives, heavy metal ions, pesticides, and microorganisms, could not only be detected but also be degraded by BiOCl-based NMs due to their excellent photocatalytic and photoelectrochemical properties. In particular, BiOCl-based NMs have been used as theranostic platforms because of their CT and photoacoustic imaging abilities, as well as photodynamic and photothermal performances. However, some reviews have only profiled the applications of dye degradation, hydrogen or oxygen production, carbon dioxide reduction, or nitrogen fixation of BiOCl NMs. There is a notable knowledge gap regarding the systematic study of the relationship between BiOCl NMs and human health, especially the biomedical applications of BiOCl-based NMs. As a result, in this review, the recent progress of BiOCl-based photocatalytic degradation and biomedical applications are summarized, and the improvement of BiOCl-based NMs in environmental and healthcare fields are also discussed. Finally, a few insights into the current status and future perspectives of BiOCl-based NMs are given. [ABSTRACT FROM AUTHOR] |