Autor: |
Hu, Wen-jun, Gou, Rui-jun, Zhang, Shu-hai, Liu, Yang, Shang, Feng-qin, Chen, Ya-hong, Bai, Hui |
Zdroj: |
Chemical Papers; May2022, Vol. 76 Issue 5, p2747-2758, 12p |
Abstrakt: |
The intermolecular interactions between the insensitive explosives 3-nitro-1,2,4-triazol-5-one (NTO) and 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) in the TNT-based melt cast explosive were theoretically investigated with the density functional theory method (DFT). The structures of NTO/LLM-105 complexes were optimized. Five stable structures were optimized using molten 2,4,6-trinitrotoluene (TNT) as an implicit solvent for correction. The types and distribution of intermolecular interactions were analyzed using reduced density gradient (RDG) analysis, and the hydrogen bond strengths were studied by core-valence bifurcation (CVB). The results are shown that the intermolecular interactions between NTO and LLM-105 were dominated by N–H...O type hydrogen bonds, and the strongest hydrogen bonds were between the hydrogen atom (H6) in the molecular of NTO and the oxygen atom (O13) in the molecule of LLM-105. The intermolecular hydrogen bond strength is ranked as Structure I > Structure II > Structure IV > Structure III > Structure V, which determines the stability of the structure. It is obvious that Structure I is the stablest. The results contribute to the investigation of the performance for melt cast explosives as well as provide guidance for explosive formulation design. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|