Abstrakt: |
Interaction of DNA-(N4-cytosine)-methyltransferase from the Bacillus amyloliquefaciens (BamHI MTase, 49 kDa) with a 20-mer duplex containing a palindromic recognition site GGATCC was studied by methods of steady-state and pre-steady-state kinetics of the methyl group transfer, gel retardation, and crosslinking of the enzyme subunits with glutaraldehyde. In steady-state conditions, BamHI MTase displays a simple kinetic behavior toward the 20-mer substrate. A linear dependence was observed for the reaction rate on the enzyme concentration and a Michaelis dependence of the reaction rate on the concentration of both substrates: S-adenosyl-L-methionine (SAM), the methyl group donor, and DNA, the methyl group acceptor. In independent experiments, the concentration of the 20-mer duplex or SAM was changed, the enzyme concentration being substantially lower than the concentrations of substrates. The kcat values determined in these conditions are in good agreement with one another and approximately equal to 0.05 s–1. The KM values for the duplex and SAM are 0.35 and 1.6 μM, respectively. An analysis of single turnover kinetics (at limiting concentration of the 20-mer duplex) revealed the following characteristics of the BamHI MTase-dependent methylation of DNA. The value of rate constant of the DNA methylation step at the enzyme saturating concentration is on average 0.085 s–1, which is only 1.6 times higher than the value determined in steady-state conditions. Only one of two target cytidine residues was methylated in a single turnover of the enzyme, which coincides with the earlier data on EcoRI MTase. Regardless of the order of enzyme preincubation with SAM and DNA, both curves for the single turnover methylation are comparable. These results are consistent with the model of the random order of the productive ternary enzyme–substrate complex formation. In contrast to the relatively simple kinetic behavior of BamHI MTase in the steady-state reaction are the data on the enzyme binding with DNA. In gel retardation experiments, there was no stoichiometrically simple complex with the oligonucleotide duplex even at low enzyme concentrations. The molecular mass of the complexes was so high that they did not enter 12% PAG. In experiments on crosslinking of the BamHI MTase subunits, it was shown that the enzyme in a free state exists as a dimer. Introduction of substoichiometric amounts of DNA into the reaction mixture results in pronounced multimerization of the enzyme. However, addition of SAM in saturating concentration at an excess of the oligonucleotide duplex over BamHI MTase converts most of the enzyme into a monomeric state. [ABSTRACT FROM AUTHOR] |