Autor: |
Vorkötter, Christoph, Mack, Daniel Emil, Zhou, Dapeng, Guillon, Olivier, Vaßen, Robert |
Předmět: |
|
Zdroj: |
Coatings (2079-6412); Mar2022, Vol. 12 Issue 3, p396-396, 11p |
Abstrakt: |
Thermal barrier coatings (TBCs) are commonly used to protect gas turbine components from high temperatures and oxidation. Such coatings consist of ceramic top coats and metallic bond coats. The mismatch in thermal expansion of the top coat, the bond coat and the component material is one main factor leading to the failure of the coating system. Columnar-structured top coats offer an enhanced tolerance to the strain during thermal cycling. On a flat bond coated surface, these TBCs reach higher thermal cycling performance. However, on rough surfaces, as used for thermal spray coatings, the performance of these thermal barrier coatings seems to be restricted or even stays below the performance of atmospheric-plasma-sprayed (APS) thermal barrier coatings. This low performance is linked to out-of-plane stresses at the interface between the top coat and the bond coat. In this study, a thin additional oxide-dispersion-strengthened (ODS) bond coat with high alumina content provides a reduced mismatch of the coefficient of thermal expansion (CTE) between the top coat and the bond coat. Columnar suspension plasma sprayed (SPS), yttria-stabilized zirconia (YSZ) TBCs were combined with low-CTE ODS bond coats. The behavior of these TBCs was characterized with respect to thermal cycling performance and degradation in a burner-rig facility. The comparison showed an up-to-four-fold increase in the performance of the new system. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|