Autor: |
Meesters-Ensing, J.I., Admiraal, R., Ebskamp, L., Lacna, A., Boelens, J. J., Lindemans, C. A., Nierkens, S. |
Předmět: |
|
Zdroj: |
Frontiers in Pharmacology; 3/18/2022, Vol. 13, p1-8, 8p |
Abstrakt: |
Anti-thymocyte globulin (ATG), a polyclonal antibody, is used in allogeneic hematopoietic cell transplantation (HCT) to prevent graft-vs.-host-disease (GvHD) and graft failure (GF). Overexposure to ATG leads to poor early T-cell recovery, which is associated with viral infections and poor survival. Patients with severe inflammation are at high risk for GF and GvHD, and may have active infections warranting swift T-cell recovery. As ATG exposure may be critical in these patients, individualized dosing combined with therapeutic drug monitoring (TDM) may improve outcomes. We describe the individualized dosing approach, an optimal sampling scheme, the assay to measure the active fraction of ATG, and the workflow to perform TDM. Using a previously published population pharmacokinetic (PK) model, we determine the dose to reach optimal exposures associated with low GvHD and rejection, and at the same time promote T-cell recovery. Based on an optimal sampling scheme, peak and trough samples are taken during the first 3 days of once-daily dosing. The fraction of ATG able to bind to T-cells (active ATG) is analyzed using a bio-assay in which Jurkat cells are co-cultured with patient's plasma and the binding is quantified using flow cytometry. TDM is performed based on these ATG concentrations on the third day of dosing; subsequent doses can be adjusted based on the expected area under the curve. We show that individualized ATG dosing with TDM is feasible. This approach is unique in the setting of antibody treatment and may result in better immune reconstitution post-HCT and subsequently better survival chances. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|