Autor: |
LIU Jia-lin, XIE Hui-min, ZHANG Zheng, YANG Bo-yun, LUO Huo-lin, GONG Gui-ru, XIONG Dong-jin |
Předmět: |
|
Zdroj: |
Chinese Journal of Oil Crop Sciences; 2022, Vol. 44 Issue 1, p63-71, 9p |
Abstrakt: |
Research of the population structure and genetic diversity has guiding significance to soybean improvement. In this study, 105 cultivar soybean accessions bred from Huang-Huai-Hai and Southern region of China were collected to detect their population structure and genetic diversity by using 99 SSR polymorphic primer pairs. The results showed that a total of 1142 alleles were detected at 99 loci with 11.54 average number of alleles per locus ranging from 5 to 24. The whole population was divided into 4 subgroups according to breeding period. The range of Nei's gene diversity was 0.628-0.839 with an average of 0.774. The polymorphism information content ranged from 0.562-0.820 with an average of 0.742. The genetic distance between subgroups ranged from 0.387 to 0.197 with an average of 0.297. Ninety-nine percentage of total variation was explained within the subgroups, and 1% of total variation was explained among subgroups based on the molecular variation analysis, which indicated that there were frequent gene exchanges in subgroups. The principal coordinate analysis showed that the first, second, and third principal factors explained 4.12%, 3.61%, and 2.90% of the total variation respectively. These soybean germplasm could be divided into 3 subgroups based on STRUCTURE analysis and unweighted pair group method with arithmetic average (UPGMA) cluster. Further comparison showed that the UPGMA subgroups and STRUCTURE subgroups displayed a highly consistent correlation with these pedigrees and the genetic base of each period. The genetic diversity had period characteristics and showed an increasing trend in this study. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|