Autor: |
Jieting Wu, Tian Gao, Lei Zhao, Hongxu Bao, Chang Yu, Jianing Hu, Fang Ma |
Předmět: |
|
Zdroj: |
Functional Plant Biology; 2022, Vol. 49 Issue 4, p365-381, 17p |
Abstrakt: |
Phragmites australis (Cav.) Trin. ex Steud is a landscape plant with resistance to heavy metals that has significance in phytoremediation. However, little is known about the metabolomic background of the heavy metal resistance mechanisms of Phragmites. We studied copper stress on Phragmites and monitored physiological indicators such as malondialdehyde (MDA) and electrolyte leakage (EL). In addition, Fourier Transform Infrared (FTIR) was used to study the related chemical composition in the roots, stems, and leaves under copper stress. Furthermore, LC-MS technology was used to analyse the plants metabolic profile. Results showed that increased copper concentration in Phragmites led to the accumulation of MDA and EL. FTIR spectrum detected the presence of O-H and C=O stretching. O-H stretching was related to the presence of flavonoids, while C=O stretching reflected the presence of protein amide I. The latter was related to the change of amino acid composition. Both flavonoids and amino acids are regarded as contributors to the antioxidant of Phragmites under copper stress. Metabolomics analysis revealed that arginine and ayarin were accumulated and Phragmites leaves responded to copper stress with changes in the pool size of arginine and ayarin. It is speculated that they could improve resistance. Arginine is accumulated through two pathways: the citrulline decomposition and conversion pathway; and the circular pathway composed of ornithine, citrulline, L-argininosuccinate and arginine. Ayarin is synthesised through the quercetin methylation pathway. This study elucidates the antioxidant mechanisms for enhancing its resistance to heavy metal stress, thus improving of phytoremediation efficiency. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|