Autor: |
Wei, Simeng, Shao, Xinxin, Liu, Yong, Xiong, Boyu, Cui, Pengfei, Liu, Ziling, Li, Quanshun |
Zdroj: |
Journal of Materials Chemistry B; 2/28/2022, Vol. 10 Issue 8, p1291-1300, 10p |
Abstrakt: |
Immune checkpoint blockade therapy against programmed death protein-1 and its ligand (PD-1/PD-L1) has been accepted as a promising approach to activate the immune system's anti-tumor response. Although small interfering RNA (siRNA) or antibodies can block the PD-1/PD-L1 pathway, the effect of this blockade is temporary and reversible. Here, we developed a nano-delivery system to achieve permanent disruption of the PD-L1 gene based on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) gene editing technology. In this system, the CRISPR/Cas9 plasmid was delivered into melanoma B16F10 cells using a nucleobase-modified polyamidoamine (PAMAM) derivative namely AP-PAMAM, which was constructed through the modification with 2-amino-6-chloropurine. Meanwhile, the carrier could efficiently facilitate the endosomal escape of CRISPR/Cas9 plasmid and thereby inhibit PD-L1 expression in cancer cells. Moreover, the intravenous injection of AP-PAMAM/plasmid nanoparticles could recruit and activate CD8+ T cells at the tumor site, promoting the secretion of cytokines and the killing of tumor cells. Overall, this nano-delivery system for genome editing provided a promising strategy to block the PD-1/PD-L1 pathway and obtain effective tumor immunotherapy. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|