Autor: |
Mates, Steven P., Sheng-Yen Li |
Předmět: |
|
Zdroj: |
Journal of Research of the National Institute of Standards & Technology; 2021, Vol. 126, p1-17, 17p |
Abstrakt: |
The National Institute of Standards and Technology (NIST) developed an experimental technique to measure the dynamic flow stress of metals under rapid heating to study their time-dependent plastic response when heating times are short enough to interrupt or bypass thermally driven microstructural evolution. Such conditions may exist as chips are formed in the machining process. Measurements of American Iron and Steel Institute1045 steel behavior up to 1000 °C showed complex thermal softening due to dynamic strain aging effects and the diffusion-limited austenite transformation process beginning at the A1 temperature (712 °C). This paper proposes a constitutive model to capture the flow stress and hardening evolution of 1045 steel under rapidly heated conditions for simulating metal cutting. The model combines the Preston-Tonks-Wallace plasticity model, which uses five parameters to capture complex rate- and temperature-sensitive strain hardening, with a dual-ratesensitivity model to capture the response of rapidly heated 1045 steel. Finally, a strain-rate-dependent Gaussian function is introduced to capture dynamic strain aging effects, which act over a narrow range of temperatures that change with strain rate. The proposed model is compared to existing plasticity models for 1045 steel over the range of data available and at a representative machining condition. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|