Autor: |
Ormerod, Kiel G., Scibelli, Anthony E., Littleton, J. Troy |
Předmět: |
|
Zdroj: |
Journal of Physiology; 1/15/2022, Vol. 600 Issue 2, p349-372, 24p |
Abstrakt: |
The Drosophila neuromuscular system is widely used to characterize synaptic development and function. However, little is known about how specific synaptic alterations effect neuromuscular transduction and muscle contractility, which ultimately dictate behavioural output. Here we develop and use a force transducer system to characterize excitation-contraction coupling at Drosophila larval neuromuscular junctions (NMJs), examining how specific neuronal and muscle manipulations disrupt muscle contractility. Muscle contraction force increased with motoneuron stimulation frequency and duration, showing considerable plasticity between 5 and 40 Hz and saturating above 50Hz. Endogenous recordings of fictive contractions revealed average motoneuron burst frequencies of 20-30 Hz, consistent with the system operating within this plastic range of contractility. Temperature was also a key factor in muscle contractility, as force was enhanced at lower temperatures and dramatically reduced with increasing temperatures. Pharmacological and genetic manipulations of critical components of Ca2+ regulation in both pre- and postsynaptic compartments affected the strength and time course of muscle contractions. A screen for modulators of muscle contractility led to identification and characterization of the molecular and cellular pathway by which the FMRFa peptide, TPAEDFMRFa, increases muscle performance. These findings indicate Drosophila NMJs provide a robust system to correlate synaptic dysfunction, regulation and modulation to alterations in excitation-contraction coupling. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|