Abstrakt: |
The estimation of the long memory parameter d is a widely discussed issue in the literature. The harmonically weighted (HW) process was recently introduced for long memory time series with an unbounded spectral density at the origin. In contrast to the most famous fractionally integrated process, the HW approach does not require the estimation of the d parameter, but it may be just as able to capture long memory as the fractionally integrated model, if the sample size is not too large. Our contribution is a generalization of the HW model, denominated the Generalized harmonically weighted (GHW) process, which allows for an unbounded spectral density at k ≥ 1 frequencies away from the origin. The convergence in probability of the Whittle estimator is provided for the GHW process, along with a discussion on simulation methods. Fit and forecast performances are evaluated via an empirical application on paleoclimatic data. Our main conclusion is that the above generalization is able to model long memory, as well as its classical competitor, the fractionally differenced Gegenbauer process, does. In addition, the GHW process does not require the estimation of the memory parameter, simplifying the issue of how to disentangle long memory from a (moderately persistent) short memory component. This leads to a clear advantage of our formulation over the fractional long memory approach. [ABSTRACT FROM AUTHOR] |