Characterization of Cardiac- and Respiratory-driven Cerebrospinal Fluid Motions Using a Correlation Mapping Technique Based on Asynchronous Two-dimensional Phase Contrast MR Imaging.

Autor: Satoshi Yatsushiro, Saeko Sunohara, Tetsuya Tokushima, Ken Takizawa, Mitsunori Matsumae, Hideki Atsumi, Tomohiko Horie, Nao Kajihara, Kagayaki Kuroda
Předmět:
Zdroj: Magnetic Resonance in Medical Sciences; 2021, Vol. 20 Issue 4, p385-395, 11p
Abstrakt: Purpose: The cardiac- and respiratory-driven components of cerebrospinal fluid (CSF) motion characteristics and bulk flow are not yet completely understood. Therefore, the present study aimed to characterize cardiac- and respiratory-driven CSF motions in the intracranial space using delay time, CSF velocity waveform correlation, and displacement. Methods: Asynchronous two-dimensional phase-contrast at 3T was applied to measure the CSF velocity in the inferior-superior direction in a sagittal slice at the midline (N = 12) and an axial slice at the foramen magnum (N = 8). Volunteers were instructed to engage in six-second respiratory cycles. The calculated delay time and correlation coefficients of the cardiac- and respiratory-driven velocity waveforms, separated in the frequency domain, were applied to evaluate the propagation of the CSF motion. The cardiac- and respiratorydriven components of the CSF displacement and motion volume were calculated during diastole and systole, and during inhalation and exhalation, respectively. The cardiac- and respiratory-driven components of the velocity, correlation, displacement, and motion volume were compared using an independent two-sample t-test. Results: The ratio of the cardiac-driven CSF velocity to the sum of the cardiac- and respiratory-driven CSF velocities was higher than the equivalent respiratory-driven ratio for all cases (P < 0.01). Delay time and correlation maps demonstrated that the cardiac-driven CSF motion propagated more extensively than the respiratory-driven CSF motion. The correlation coefficient of the cardiac-driven motion was significantly higher in the prepontine (P < 0.01), the aqueduct, and the fourth ventricle (P < 0.05). The respiratory-driven displacement and motion volume were significantly greater than the cardiac-driven equivalents for all observations (P < 0.01). Conclusion: The correlation mapping technique characterized the cardiac- and respiratory-driven CSF velocities and their propagation properties in the intracranial space. Based on these findings, cardiac-driven CSF velocity is greater than respiratory-induced velocity, but the respiratory-driven velocity might displace farther. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index