Abstrakt: |
A new multi-point inflow pre-anoxic/oxic/anaerobic/anoxic/oxic (A1/O2/A3/A4/O5) sludge-membrane coupling process and pilot plant were developed and designed to solve the problem of nitrogen and phosphorus removal of low carbon and nitrogen (C/N) ratio domestic sewage in southern China. The removal effect and transformation rule of organic matter, nitrogen, and phosphorus in the system were studied by changing the distribution ratio of multi-point influent. The average C/N ratio of the influent was 2.09 and the influent distribution ratio was 1:1. When the temperature was 16–25 °C, the average concentrations of chemical oxygen demand (COD), ammonia nitrogen (NH4+- N), total nitrogen (TN), and total phosphorus (TP) in the effluent were 21.31 (±2.65), 0.60 (±0.24), 12.76 (±1.09), and 0.34 (±0.05) mg/L, respectively, and their average removals are 87.3 (±1.2)%, 98.7 (±0.4)%, 74.1 (±1.3)%, and 88.1 (±0.4)% respectively. When the low temperature was 12–15 °C, the average removals were 78.6 (±1.1)%, 90.5 (±1.3)%, 73.7 (±1.13)%, and 86.6 (±1.7)%, respectively. Compared with the traditional anaerobic/anoxic/aerobic (A2O) process under the same conditions, the TN removal was increased by 15.4%, and the TP removal was increased by 22.2%. This system has obvious advantages in treating wastewater with low C/N ratio, thereby solving the problem wherein the effluent of biological phosphorus removal from low C/N ratio domestic sewage was difficult when it was lower than 0.5 mg/L. [ABSTRACT FROM AUTHOR] |