Synthesis of novel hierarchical micro/nanostructures AlOOH/AlFe and their application for As(V) removal.

Autor: Svarovskaya, Natalia, Bakina, Olga, Glazkova, Elena, Rodkevich, Nikolay, Lerner, Marat, Vornakova, Ekaterina, Chzhou, Valeria, Naumova, Liudmila
Předmět:
Zdroj: Environmental Science & Pollution Research; Jan2022, Vol. 29 Issue 1, p1246-1258, 13p
Abstrakt: Hierarchical micro/nanostructured composites, which contain iron and/or its (hydr)oxides, demonstrate high rate and capacity of arsenic adsorption. The main objective of this paper is the use of novel low toxicity AlOOH/AlFe hierarchical micro/nanostructures for arsenic removal. AlOOH/AlFe composite was obtained by simple water oxidation in mild conditions using AlFe bimetallic nanopowder as a precursor. AlFe bimetallic nanopowder was produced by electrical explosive of two twisted wires in argon atmosphere. The productivity of the electrical explosion assembly was 50 g/h, with the consumption of the electrical energy was 75 kW·h/kg. AlFe bimetallic nanoparticles were chemically active and interacted with water at 60 °C. This nanocomposite AlOOH/AlFe is low cost and adsorbs more than 200 mg/g As(V) from its aqueous solution. AlOOH/AlFe composite has flower-like morphology and specific surface area 247.1 m2/g. The phase composition of nanostructures is present AlOOH boehmite and AlFe intermetallic compound. AlOOH/AlFe composite was not previously used for this. The flower-shape AlOOH morphology not only facilitated deliverability, but increased the As(V) sorption capacity by up to 200 mg/g. The adsorption kinetics has been found to be described by a pseudo-second-order equation of Lagergren and Weber-Morris models while the experimental adsorption isotherm is closest to the Freundlich model. This indicates the energy heterogeneity of the adsorbent surface and multilayer adsorption. The use of non-toxic nanostructures opens up new options to treat water affected by arsenic pollution. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index