Abstrakt: |
Terraced farming play several roles, from improving ecosystem services to enhancing associated population livelihoods. In this study, we were interested in evaluating the roles of mountain terraces in controlling floods and erosion risks, in particular in the Ourika watershed, located in the High Atlas mountains of Morocco. Rainfall simulation tests were conducted to measure infiltration, runoff and initial abstraction, while the Cesium-137 isotope technique was used to quantify soil loss. The results highlighted high infiltration for dense forests (78.00 ± 2.65 mm/h) and low for rangelands (27.12 ± 2.82 mm/h). For terraces, infiltration was found to be about 70.36 ± 0.56 mm/h, confirming the role of terraces in promoting infiltration. The runoff coefficient obtained was lowest for dense forests, followed by cultivated terraces, and highest for rangelands (62.71 ± 3.51). Thus, outside dense forests, infiltration and runoff were significantly very high and low, respectively, for agricultural terraces compared to other land use. The assessment of soil erosion rates showed a significant soil loss for rangelands compared to the agricultural terraces, further underlining the role of terraces in soil conservation. Terraces in the Ourika watershed, by increasing water infiltration, reduce the rate of surface runoff, and consequently, flood risks and soil degradation. [ABSTRACT FROM AUTHOR] |