Entropy solutions for unilateral parabolic problems with L1-data in Musielak-Orlicz-Sobolev spaces.

Autor: EL AMARTY, Nourdine, EL HAJI, Badr, EL MOUMNI, Mostafa
Předmět:
Zdroj: Palestine Journal of Mathematics; 2022, Vol. 11 Issue 1, p504-523, 20p
Abstrakt: We prove the existence of entropy solution for the obstacle parabolic equations : ∂u/∂t − div▽a(x, t, u, ∇u) + Φ(u) ▽+ g(u)ϕ(x, |∇u|) = f in Q, where −div▽ ( a(x, t, u, ∇u) ) is a Leray-Lions operator, Φ ∈ C 0 (R, RN ),The function g(u)ϕ(x, |∇u|) is a nonlinear lower order term with natural growth with respect to |∇u|, without satisfying the sign condition and the datum is assumed belongs to L 1 (Q) [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index