Inhibition of PI3K/Akt and ERK signaling decreases visfatin-induced invasion in liver cancer cells.

Autor: Miethe, Candace, Torres, Linda, Zamora, Megan, Price, Ramona S.
Předmět:
Zdroj: Hormone Molecular Biology & Clinical Investigation; Dec2021, Vol. 42 Issue 4, p357-366, 10p
Abstrakt: Visfatin is found in adipose tissue and is referred to as nicotinamide phosphoribosyltransferase (Nampt). Visfatin has anti-apoptotic, proliferative, and metastatic properties and may mediate its effects via ERK and PI3K/Akt signaling. Studies have yet to determine whether inhibition of kinase signaling will suppress visfatin-induced liver cancer. The purpose of this study was to determine which signaling pathways visfatin may promote liver cancer progression. HepG2 and SNU-449 liver cancer cells were exposed to visfatin with or without ERK or PI3K/Akt inhibitor, or both inhibitors combined. These processes that were assessed: proliferation, reactive oxygen species (ROS), lipogenesis, invasion, and matrix metalloproteinase (MMP). Inhibition of PI3K/Akt and combination of inhibitors suppressed visfatin-induced viability. ERK inhibition in HepG2 cells decreased visfatin-induced proliferation. ERK inhibitor alone or in combination with PI3K inhibitors effectively suppressed MMP-9 secretion and invasion in liver cancer cells. PI3K and ERK inhibition and PI3K inhibition alone blocked visfatin's ROS production in SNU-449 cells. These results corresponded with a decrease in phosphorylated Akt and ERK, β-catenin, and fatty acid synthase. Akt and ERK inhibition differentially regulated physiological changes in liver cancer cells. Inhibition of Akt and ERK signaling pathways suppressed visfatin-induced invasion, viability, MMP-9 activation, and ROS production. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index