Abstrakt: |
In recent times, producing electricity with lower carbon emissions has resulted in strong clean energy incorporation into the distribution network. The technical development of weather-driven renewable distributed generation units, the global approach to reducing pollution emissions, and the potential for independent power producers to engage in distribution network planning (DNP) based on the participation in the increasing share of renewable purchasing obligation (RPO) are some of the essential reasons for including renewable-based distributed generation (RBDG) as an expansion investment. The Grid-Scale Energy Storage System (GSESS) is proposed as a promising solution in the literature to boost the energy storage accompanied by RBDG and also to increase power generation. In this respect, the technological, economic, and environmental evaluation of the expansion of RBDG concerning the RPO is formulated in the objective function. Therefore, a novel approach to modeling the composite DNP problem in the regulated power system is proposed in this paper. The goal is to increase the allocation of PVDG, WTDG, and GSESS in DNP to improve the quicker retirement of the fossil fuel-based power plant to increase total profits for the distribution network operator (DNO), and improve the voltage deviation, reduce carbon emissions over a defined planning period. The increment in RPO and decrement in the power purchase agreement will help DNO to fulfill round-the-clock supply for all classes of consumers. A recently developed new metaheuristic transient search optimization (TSO) based on electrical storage elements' stimulation behavior is implemented to find the optimal solution for multi-objective function. The balance between the exploration and exploitation capability makes the TSO suitable for the proposed power flow problem with PVDG, WTDG, and GSESS. For this research, the IEEE-33 and IEEE-69 low and medium bus distribution networks are considered under a defined load growth for planning duration with the distinct load demand models' aggregation. The findings of the results after comparing with well-known optimization techniques DE and PSO confirm the feasibility of the method suggested. [ABSTRACT FROM AUTHOR] |