Abstrakt: |
Interspecific plant hybridization is a common and evolutionarily important phenomenon. Here, the results of a study of hybridization in the Florida Keys between two species of sea oxeye daisy, Borrichia frutescens and B. arborescens, are reported. Nuclear and chloroplast genetic loci, log-likelihood assignment tests, and maximum likelihood estimates of genealogical class frequencies were used to identify hybrid and parent genotypes, to investigate the utility of leaf and flower morphology for hybrid identification, and to study symmetry and degree of introgression between the species. Genetic analyses confirmed the identity of the hybrid and parent plants that were used for the morphological studies. Together, leaf and flower morphology can be used to identify hybrid and parental types with moderate accuracy (4% error rate). Population genetic analyses indicate that, in spite of a significant level of hybridization, pure B. frutescens and B. arborescens are persisting in the hybrid zone. Of the nonparentals, about 18% appear to be F1 hybrids, over 50% F2 hybrids, and the remainder backcrossed individuals but only with the B. frutescens parent. It is postulated that the hybrid zone in the Florida Keys is being maintained by a combination of positive assortative mating and clonal reproduction. [ABSTRACT FROM AUTHOR] |