Autor: |
D'Amico, Anna E., Wong, Alexander C., Zajd, Cheryl M., Xuexin Zhang, Murali, Ananya, Trebak, Mohamed, Lennartz, Michelle R. |
Předmět: |
|
Zdroj: |
Journal of Cell Science; Nov2021, Vol. 134 Issue 21, p1-15, 15p |
Abstrakt: |
Protein kinase C (PKC)-ε is required for membrane addition during IgG-mediated phagocytosis, but its role in this process is ill defined. Here, we performed high-resolution imaging, which reveals that PKC- ε exits the Golgi and enters phagosomes on vesicles that then fuse. TNF and PKC-ε colocalize at the Golgi and on vesicles that enter the phagosome. Loss of PKC-ε and TNF delivery upon nocodazole treatment confirmed vesicular transport on microtubules. That TNF+ vesicles were not delivered in macrophages from PKC-ε null mice, or upon dissociation of the Golgi-associated pool of PKC-ε, implies that Golgi-tethered PKC-ε is a driver of Golgi-to-phagosome trafficking. Finally, we established that the regulatory domain of PKC-ε is sufficient for delivery of TNF+ vesicles to the phagosome. These studies reveal a novel role for PKC-ε in focal exocytosis -- its regulatory domain drives Golgi-derived vesicles to the phagosome, whereas catalytic activity is required for their fusion. This is one of the first examples of a PKC requirement for vesicular trafficking and describes a novel function for a PKC regulatory domain. This article has an associated First Person interview with the first author of the paper. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|