Abstrakt: |
In Pretoria South Africa, we looked into the origins of fine particulate matter (PM2.5), based on 1-year sampling campaign carried out between April 18, 2017, and April 17, 2018. The average PM2.5 concentration was 21.1 ± 15.0 µg/m3 (range 0.7–66.8 µg/m3), with winter being the highest and summer being the lowest. The XEPOS 5 energy dispersive X-ray fluorescence (EDXRF) spectroscopy was used for elemental analysis, and the US EPA PMF 5.0 program was used for source apportionment. The sources identified include fossil fuel combustion, soil dust, secondary sulphur, vehicle exhaust, road traffic, base metal/pyrometallurgical, and coal burning. Coal burning and secondary sulphur were significantly higher in winter and contributed more than 50% of PM2.5 sources. The HYSPLIT model was used to calculate the air mass trajectories (version 4.9). During the 1-year research cycle, five transportation clusters were established: North Limpopo (NLP), Eastern Inland (EI), Short-Indian Ocean (SIO), Long-Indian Ocean (LIO), and South Westerly-Atlantic Ocean (SWA). Local and transboundary origin accounted for 85%, while 15% were long-range transport. Due to various anthropogenic activities such as biomass burning and coal mining, NLP clusters were the key source of emissions adding to the city's PM rate. In Pretoria, the main possible source regions of PM2.5 were discovered to be NLP and EI. Effective control strategies designed at reducing secondary sulphur, coal burning, and fossil fuel combustion emissions at Southern African level and local combustion sources would be an important measure to combat the reduction of ambient PM2.5 pollution in Pretoria. [ABSTRACT FROM AUTHOR] |