Autor: |
Jianmin Su, Sabbagh, Ubadah, Yanping Liang, Olejníková, Lucie, Dixon, Karen G., Russell, Ashley L., Jiang Chen, Pan, Yuchin Albert, Triplett, Jason W., Fox, Michael A. |
Předmět: |
|
Zdroj: |
Proceedings of the National Academy of Sciences of the United States of America; 10/19/2021, Vol. 118 Issue 42, p1-12, 12p |
Abstrakt: |
Information about features in the visual world is parsed by circuits in the retina and is then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinorecipient brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nephronectin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors expressed by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell--extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|