Inhibition of lipid phosphatase SHIP1 expands myeloid-derived suppressor cells and attenuates rheumatoid arthritis in mice.

Autor: Eui-Young So, Changqi Sun, Wu, Keith Q., Dubielecka, Patrycja M., Reginato, Anthony M., Liang, Olin D.
Předmět:
Zdroj: American Journal of Physiology: Cell Physiology; Sep2021, Vol. 321 Issue 3, pC569-C584, 16p
Abstrakt: Rheumatoid arthritis (RA) is a debilitating autoimmune disease of unknown cause, characterized by infiltration and accumulation of activated immune cells in the synovial joints where cartilage and bone destructions occur. Myeloid-derived suppressor cells (MDSCs) are of myeloid origin and are able to suppress T cell responses. Src homology 2 domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1) was shown to be involved in the regulation of MDSC differentiation. The purpose of the present study was to investigate the effect of inhibition of SHIP1 on the expansion of MDSCs in RA using a collagen-induced inflammatory arthritis (CIA) mouse model. In DBA/1 mice, treatment with a small molecule-specific SHIP1 inhibitor 3a-aminocholestane (3AC) induced a marked expansion of MDSCs in vivo. Both pretreatment with 3AC of DBA/1 mice prior to CIA induction and intervention with 3AC during CIA progression significantly reduced disease incidence and severity. Adoptive transfer of MDSCs isolated from 3AC-treated mice, but not naïve MDSCs from normal mice, into CIA mice significantly reduced disease incidence and severity, indicating that the 3AC-induced MDSCs were the cellular mediators of the observed amelioration of the disease. In conclusion, inhibition of SHIP1 expands MDSCs in vivo and attenuates development of CIA in mice. Small molecule-specific inhibition of SHIP1 may therefore offer therapeutic benefit to patients with RA and other autoimmune diseases. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index