Autor: |
Pu, Bo, Li, Wenbin, Zhang, Qing, Zheng, Yu, Wang, Xiaoming |
Předmět: |
|
Zdroj: |
Metals (2075-4701); Aug2021, Vol. 11 Issue 8, p1327, 1p |
Abstrakt: |
In this paper, the plastic flow and fracture behavior of 3D-printed Ti6Al4V (TC-4) alloy under different temperatures (289–1073 K) and strain rates (0.1–4100 s−1) were studied by using the MTS comprehensive experimental machine (MTS) and split Hopkinson pressure bar (SHPB) equipment. The patterns of the influence of temperature and strain rate on the plastic flow behavior of 3D-printed materials in different printing directions were analyzed and compared with those of the traditional TC-4. Based on the experimental data, the modified Johnson–Cook (J-C) constitutive model of 3D-printed TC-4 alloy was established, and the plastic deformation behavior of the material driven by detonation was studied by X-ray photography. The research results showed that under static loading conditions, the strength of the material (AM-P-TC-4) along the printing direction was much higher than the strength of the material perpendicular to the printing direction (AM-T-TC-4). However, there was no difference in material strength for different directions under dynamic loading. Second, under the same deformation conditions, the strength of the 3D-printed TC-4 alloy was considerably higher than that of the traditional TC-4 alloy, but adiabatic shear fracture could be more easily induced under dynamic compressive deformation conditions for the 3D-printed TC-4 alloy, and its fracture strain was substantially less than that of TC-4 alloys. The modified J-C constitutive model established in this paper could better describe the plastic flow behavior of the AM-P-TC-4 alloy under high temperature and high-strain rate deformation conditions. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|