On the Dimension of the Bergman Space of Some Hartogs Domains with Higher Dimensional Bases.
Autor: | Boudreaux, Blake J. |
---|---|
Zdroj: | Journal of Geometric Analysis; Aug2021, Vol. 31 Issue 8, p7885-7899, 15p |
Abstrakt: | Let D be a Hartogs domain of the form D = D φ (G) = { (z , w) ∈ G × C N : ‖ w ‖ < e - φ (z) } , where φ is a plurisubharmonic function on G and G ⊆ C M is a pseudoconvex domain. We expand on the results of Jucha (J Geom Anal 22(1):23–37, 2012) and prove the infinite-dimensionality or triviality of the space of square integrable holomorphic functions on D φ (G) for various choices of φ and G. [ABSTRACT FROM AUTHOR] |
Databáze: | Complementary Index |
Externí odkaz: |