Abstrakt: |
Microgreens are receiving increasing popularity as functional and healthy foods due to their nutritional value and high content of bioactive compounds. The aim of the present study was to evaluate the effects of nutrient deprivation through the regulation of nutrient solution (NS) feeding days on the plant growth and chemical composition of spinach microgreens. For this purpose, spinach microgreens were subjected to four different fertigation treatments—namely, 0 (control), 5, 10, and 20 NS feeding days before harvesting—and harvested tissues were evaluated with regard to fresh and dry yield, color of true leaves, antioxidant activity, and chlorophyll, carotenoid, and phenolic compound contents. The results of our study revealed that prolonged NS feeding (20 NS) resulted in the highest fresh yield and photosynthetic pigment contents (chlorophylls, lutein, and β-carotene). In contrast, mineral concentrations (P, K, Ca, and Mg) were the lowest for the 20 NS, whereas the control (0 NS) and 5 NS recorded the highest concentrations. Apart from that, spinach microgreens subjected to 10 NS treatment recorded 70.7% less nitrates, better mineral concentrations, 7.0% higher total ascorbic acid, similar polyphenol contents, higher DM%, and only 12.6% yield decrease compared to 20 NS treatment. In conclusion, although the highest overall fresh yield was recorded with the 20 NS treatment, the highest nitrate concentrations and the lowest mineral concentrations may raise food safety concerns. On the other hand, 10 NS treatment seems to be the most promising, since it combined high yields with high mineral concentrations and low nitrate concentrations, without compromising bioactive compound (e.g., polyphenols) contents, presenting a cost-effective and sustainable practice for microgreen cultivation. [ABSTRACT FROM AUTHOR] |