Abstrakt: |
We develop a mathematical model of the coronavirus propagation in different countries (Brazil, India, US, Japan, Israel, Spain, Sweden), in the city of Moscow, and across the world. The pandemic spreads by a highly complex dynamics because it occurs in open nonhomogeneous systems where new infection foci erupt from time to time, triggering new transmission chains from infected to susceptible people. In general, statistical data collected as cumulative and epidemic curves are a superposition of many distinct local pandemic waves. In our modeling, we use the system of Feigenbaum's discrete logistic equations (a logistic map) that describes the variation of the total number of infected over time. We show that this is the optimal model for the description of pandemic propagation in open nonhomogeneous systems with large errors in statistical data. We develop a procedure for isolating local waves, determining their model parameters, and predicting further evolution of each wave. We show that this model provides a good description of the statistical data and makes realistic forecasts. The forecast horizon depends on the degree of system closure and homogeneity. We calculate the start and end times of each wave, the peak, and the total number of infected in the current wave. [ABSTRACT FROM AUTHOR] |