ESTIMATING THE INFLUENCE OF DOUBLE-SIDED ROUNDED SCREENS ON THE ACOUSTIC FIELD AROUND A LINEAR SOUND SOURCE.

Autor: Didkovskyi, Vitalii, Zaets, Vitaly, Kotenko, Svetlana, Denysenko, Volodymyr, Didenko, Yuriy
Předmět:
Zdroj: Eastern-European Journal of Enterprise Technologies; 2021, Vol. 111 Issue 5, p38-46, 9p
Abstrakt: This paper reports a study into the acoustic field of transport flow around noise protection screens located on both sides of the sound source. Most research on noise protection involving noise protection screens relates to the assessment of the effectiveness of screens located on one side of the noise source. The influence of the second screen on the effectiveness of the first one has been investigated only experimentally. Therefore, it is a relevant task to assess the mutual impact of the two screens between which the linear sound source is located. A problem was stated in such a way that has made it possible to derive an analytical solution and find a sound field around a linear sound source. In this case, the sound source was limited on both sides by acoustically rigid screens with finite thickness. The screens' cross-sections were shaped as part of a ring with arbitrary angles and the same radius. The problem was solved by the method of partial domains. This method has made it possible to obtain an infinite system of algebraic equations that were solved by the method of reduction. Such an approach to solving a problem allows a given solution to be applied for different cases of the mutual location of screens, source, and territory protected from noise. The study results help estimate a field between the screens, the dependence of increasing sound pressure on the road on the geometric size of the screen and the width of the road. In addition, the solution resulted in the ability to assess the impact of one screen on the efficiency of another in the frequency range of up to 1,000 Hz. It has been shown that the mutual impact of screens could reduce the screen efficiency by 2 times. The study reported here could make it possible to more accurately calculate the levels of the sound field from traffic flows when using noise protection screens, which is often performed in practice when designing new and reconstructing existing highways. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index