Autor: |
Ouimette, James R., Malm, William C., Schichtel, Bret A., Sheridan, Patrick J., Andrews, Elisabeth, Ogren, John A., Arnott, W. Patrick |
Předmět: |
|
Zdroj: |
Atmospheric Measurement Techniques Discussions; 6/24/2021, p1-35, 35p |
Abstrakt: |
The Plantower PMS5003 sensors (PA-PMS) used in the PurpleAir (PA) monitor PA-II-SD configuration are equivalent to cell-reciprocal nephelometers using a 657 nm perpendicularly polarized light source that integrates light scattering from 18 to 166 degrees. Yearlong field data at the National Oceanic and Atmospheric Administration's (NOAA) Mauna Loa Observatory (MLO) and Boulder Table Mountain (BOS) sites show that the 1 h average of the PA-PMS first size channel, labeled ">0.3 µm" ("CH1") is highly correlated with submicrometer aerosol scattering coefficients at the 550 nm and 700 nm wavelengths measured by the TSI 3563 integrating nephelometer, from 0.4 Mm-1 to 500 Mm-1. This corresponds to an hourly average submicrometer aerosol mass concentration of approximately 0.2 to 200 µg m-3. A physical-optical model of the PA-PMS is developed to estimate light intensity on the photodiode, accounting for angular truncation as a function of particle size. Predictions are then compared with yearlong fine aerosol size distribution and scattering coefficient field data at the BOS site. It is shown that CH1 is linearly proportional to the model-predicted intensity of the light scattered by particles in the PA-PMS laser to its photodiode over 4 orders of magnitude. This is consistent with CH1 being a measure of the scattering coefficient and not the particle number concentration or particulate matter concentration. Field data at BOS confirm the model prediction that the ratio of CH1 to the scattering coefficient would be highest for aerosols with median scattering diameters <0.3 µm. The PA-PMS detects aerosols smaller than 0.3 µm diameter in proportion to their contribution to the scattering coefficient. The model predicts that the PA-PMS response to particles >0.3 µm decreases relative to an ideal nephelometer by about 75% for particle diameters =1.0 µm. This is a result of using a laser that is polarized, the angular truncation of the scattered light, and particle loss in the instrument before reaching the laser. The results of this study indicate that the PA-PMS is not an optical particle counter and that its six size fractions are not an accurate representation of particle size distribution. The relationship between the PA-PMS 1 h average CH1 and bsp1, the scattering coefficient in Mm-1 due to particles below 1 µm aerodynamic diameter, at wavelength 550 nanometers, is found to be bsp1 = 0.015 ± 2.07 × 10-5 × CH1, for relative humidity below 40%. The coefficient of determination R² is 0.97. This suggests that the low-cost and widely used PA monitors can be used to measure and predict the aerosol light scattering coefficient in the mid-visible nearly as well as integrating nephelometers. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|