Challenges in Building of Deep Learning Models for Glioblastoma Segmentation: Evidence from Clinical Data.

Autor: KURMUKOV, Anvar, DALECHINA, Aleksandra, SAPAROV, Talgat, BELYAEV, Mikhail, ZOLOTOVA, Svetlana, GOLANOV, Andrey, NIKOLAEVA, Anna
Zdroj: Studies in Health Technology & Informatics; 2021, Issue 281, p298-302, 5p, 1 Color Photograph, 1 Graph
Abstrakt: In this article, we compare the performance of a state-of-the-art segmentation network (UNet) on two different glioblastoma (GB) segmentation datasets. Our experiments show that the same training procedure yields almost twice as bad results on the retrospective clinical data compared to the BraTS challenge data (in terms of Dice score). We discuss possible reasons for such an outcome, including inter-rater variability and high variability in magnetic resonance imaging (MRI) scanners and scanner settings. The high performance of segmentation models, demonstrated on preselected imaging data, does not bring the community closer to using these algorithms in clinical settings. We believe that a clinically applicable deep learning architecture requires a shift from unified datasets to heterogeneous data. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index