Autor: |
Llewellyn, Steffan H., Faroni, Alessandro, Iliut, Maria, Bartlam, Cian, Vijayaraghavan, Aravind, Reid, Adam J. |
Předmět: |
|
Zdroj: |
Advanced Biology; Apr2021, Vol. 5 Issue 4, p1-15, 15p |
Abstrakt: |
Mesenchymal stromal cells from adipose tissue (AD-MSCs) exhibit favorable clinical traits for autologous transplantation and can develop 'Schwann-like' phenotypes (sAD-MSCs) to improve peripheral nerve regeneration, where severe injuries yield insufficient recovery. However, sAD-MSCs regress without biochemical stimulation and detach from conduits under unfavorable transplant conditions, negating their paracrine effects. Graphene-derived materials support AD-MSC attachment, regulating cell adhesion and function through physiochemistry and topography. Graphene oxide (GO) is a suitable substrate for human sAD-MSCs incubation toward severe peripheral nerve injuries by evaluating transcriptome changes, neurotrophic factor expression over a 7-days period, and cell viability in apoptotic conditions is reported. Transcriptome changes from GO incubation across four patients are minor compared to biological variance. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial-derived neurotrophic factor (GDNF) gene expression is unchanged from sAD-MSCs on GO substrates, but NGF and GDNF protein secretion increase at day 3 and 7. Secretome changes do not improve dorsal root ganglia neuron axon regeneration in conditioned media culture models. Fewer sAD-MSCs detach from GO substrates compared to glass following phosphate buffer saline exposure, which simulates apoptotic conditions. Overall, GO substrates are compatible with sAD-MSC primed for peripheral nerve regeneration strategies and protect the cell population in harsh environments. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|