Preserve Integrity in Realtime Event Summarization.

Autor: CHEN LIN, ZHICHAO OUYANG, XIAOLI WANG, HUI LI, ZHENHUA HUANG
Předmět:
Zdroj: ACM Transactions on Knowledge Discovery from Data; Apr2021, Vol. 15 Issue 3, p1-29, 29p
Abstrakt: Online text streams such as Twitter are the major information source for users when they are looking for ongoing events. Realtime event summarization aims to generate and update coherent and concise summaries to describe the state of a given event. Due to the enormous volume of continuously coming texts, realtime event summarization has become the de facto tool to facilitate information acquisition. However, there exists a challenging yet unexplored issue in current text summarization techniques: how to preserve the integrity, i.e., the accuracy and consistency of summaries during the update process. The issue is critical since online text stream is dynamic and conflicting information could spread during the event period. For example, conflicting numbers of death and injuriesmight be reported after an earthquake. Such misleading information should not appear in the earthquake summary at any timestamp. In this article,we present a novel realtime event summarization framework called IAEA (i.e., Integrity-Aware Extractive-Abstractive realtime event summarization). Our key idea is to integrate an inconsistency detection module into a unified extractive–abstractive framework. In each update, important new tweets are first extracted in an extractive module, and the extraction is refined by explicitly detecting inconsistency between new tweets and previous summaries. The extractive module is able to capture the sentence-level attention which is later used by an abstractive module to obtain the word-level attention. Finally, the word-level attention is leveraged to rephrase words. We conduct comprehensive experiments on real-world datasets. To reduce efforts required for building sufficient training data, we also provide automatic labeling steps of which the effectiveness has been empirically verified. Through experiments, we demonstrate that IAEA can generate better summaries with consistent information than state-of-the-art approaches. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index