Autor: |
Reis, Daniel Costa, Quattrone, Marco, Souza, Jhonathan F. T., Punhagui, Katia R. G., Pacca, Sergio A., John, Vanderley M. |
Předmět: |
|
Zdroj: |
Journal of Industrial Ecology; Apr2021, Vol. 25 Issue 2, p344-358, 15p, 1 Diagram, 3 Charts, 4 Graphs |
Abstrakt: |
Cement production contributes 8–9% of all anthropogenic CO2 emissions worldwide, and further increases in the future are expected. Traditional solutions for reducing emissions, including energy efficiency, using alternative fuels, and clinker‐to‐cement ratio reduction, are insufficient to ensure the necessary mitigation. Based on the concept of material efficiency, this study identifies new alternatives for reducing CO2 emissions by adopting a set of technological solutions to increase the industrialization of cement‐based products and the use of fillers considering a cradle‐to‐use approach. Besides, increasing the filler content in mortars and plain concrete is a desirable strategy, because it increases the carbonation rate, accelerating the CO2 sequestration from the atmosphere. Based on data from the Brazilian cement industry technology roadmap, this study quantitatively evaluates, up to 2050, the CO2 mitigation potential and the reduction of cement consumption for each adopted technological solution. The marginal abatement costs are also included to quantify each considered solution's cost‐effectiveness and compared with alternatives like carbon capture and storage. The results show that increasing the cement use efficiency enables CO2 emissions reduction by up to 45% by 2050, with a cost of USD –1.36 for each avoided metric ton of CO2, while accelerating the mortar carbonation rate. This article met the requirements for a gold–gold JIE data openness badge described in http://jie.click/badges. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|