APPROXIMATING AND BOUNDING FRACTIONAL STIELTJES CONSTANTS.

Autor: FARR, RICKY E., PAULI, SEBASTIAN, SAIDAK, FILIP
Předmět:
Zdroj: Functiones et Approximatio Commentarii Mathematici; Mar2021, Vol. 64 Issue 1, p7-22, 16p
Abstrakt: We discuss evaluating fractional Stieltjes constants γα(a), arising naturally from the Laurent series expansions of the fractional derivatives of the Hurwitz zeta functions ζα)(s,a). We give an upper bound for the absolute value of Cα(a)=γα(a)-logα(a)/a and an asymptotic formula ˜Cα(a) for Cα(a) that yields a good approximation even for most small values of α. We bound |˜Cα(a)| and based on this we conjecture a tighter bound for |Cα(a)|. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index