Environmental burden of unprocessed solid waste handling in Enugu State, Nigeria.

Autor: Mama, Cordelia Nnennaya, Nnaji, Chidozie Charles, Nnam, John P., Opata, Opata C.
Předmět:
Zdroj: Environmental Science & Pollution Research; Apr2021, Vol. 28 Issue 15, p19439-19457, 19p
Abstrakt: Improper waste management has assumed a worrisome dimension in cities across many developing countries. One of its commonest features is open dumps. Open dumps in Enugu and Nsukka were investigated in this study. Waste samples were collected from ten dumps located in low-income, low-to-middle income, and high-income zones of the study area. The composition of waste was determined following standard methods and results obtained subjected to statistical analyses. Selected open dumps were subjected to detailed inspection in order to identify possible environmental impacts. Soil samples were also collected from the top soil and subsoil (15 cm) of selected dumps and analyzed for As, Cd, Cr, Cu, Hg, Mn, Pb, Ni, Cd, and Zn. The sources of contamination were determined using the principal component analysis (PCA) and cluster analysis (CA). Results of heavy metal analyses were used to determine extent of soil pollution. Food waste ranged from 29.6 to 56.5% with an average of 42.2%. Analysis along income line showed a decline in the proportion of food and rubber waste from lower to high income. The order of heavy metals concentration in waste dump soils investigated was as follows: Mn > Zn > Cu > Cr > Pb > As > Ni > Cd > Hg. The pollution indices (PI) of the dumpsites ranged from 1.87 for Ni to 1634.6 for Cu in the topsoil, and 0.62 for Ni to 1354.74 for Cu in the subsoil, indicating a severe level of pollution. Pollution load index (PLI) ranged from 25.38 to 75.07 with a mean of 60.75 for the dump surface and from 51.46 to 21.7 with a mean of 33.86 below the dump soil. Forty-three percent (43%) of the topsoil and 40% of the subsoil exhibited ecological risk index values greater than 320, indicating extreme degree of ecological risk. The first principal and second principal components with 36% and 28.2% variance respectively represent the growing impact of electronic waste disposal, specifically mobile phones, personal computers, and other potable electronic devices with short life span on waste dumps. The third principal component (10.2%) represents input from households and other forms of chemicals such as insecticides, paints, and detergents. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index