Effect of High-Intensity Strength Training on Knee Pain and Knee Joint Compressive Forces Among Adults With Knee Osteoarthritis: The START Randomized Clinical Trial.

Autor: Messier, Stephen P., Mihalko, Shannon L., Beavers, Daniel P., Nicklas, Barbara J., DeVita, Paul, Carr, J. Jeffery, Hunter, David J., Lyles, Mary, Guermazi, Ali, Bennell, Kim L., Loeser, Richard F.
Předmět:
Zdroj: JAMA: Journal of the American Medical Association; 2/16/2021, Vol. 325 Issue 7, p646-657, 12p
Abstrakt: Importance: Thigh muscle weakness is associated with knee discomfort and osteoarthritis disease progression. Little is known about the efficacy of high-intensity strength training in patients with knee osteoarthritis or whether it may worsen knee symptoms.Objective: To determine whether high-intensity strength training reduces knee pain and knee joint compressive forces more than low-intensity strength training and more than attention control in patients with knee osteoarthritis.Design, Setting, and Participants: Assessor-blinded randomized clinical trial conducted at a university research center in North Carolina that included 377 community-dwelling adults (≥50 years) with body mass index (BMI) ranging from 20 to 45 and with knee pain and radiographic knee osteoarthritis. Enrollment occurred between July 2012 and February 2016, and follow-up was completed September 2017.Interventions: Participants were randomized to high-intensity strength training (n = 127), low-intensity strength training (n = 126), or attention control (n = 124).Main Outcomes and Measures: Primary outcomes at the 18-month follow-up were Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) knee pain (0 best-20 worst; minimally clinically important difference [MCID, 2]) and knee joint compressive force, defined as the maximal tibiofemoral contact force exerted along the long axis of the tibia during walking (MCID, unknown).Results: Among 377 randomized participants (mean age, 65 years; 151 women [40%]), 320 (85%) completed the trial. Mean adjusted (sex, baseline BMI, baseline outcome values) WOMAC pain scores at the 18-month follow-up were not statistically significantly different between the high-intensity group and the control group (5.1 vs 4.9; adjusted difference, 0.2; 95% CI, -0.6 to 1.1; P = .61) or between the high-intensity and low-intensity groups (5.1 vs 4.4; adjusted difference, 0.7; 95% CI, -0.1 to 1.6; P = .08). Mean knee joint compressive forces were not statistically significantly different between the high-intensity group and the control group (2453 N vs 2512 N; adjusted difference, -58; 95% CI, -282 to 165 N; P = .61), or between the high-intensity and low-intensity groups (2453 N vs 2475 N; adjusted difference, -21; 95% CI, -235 to 193 N; P = .85). There were 87 nonserious adverse events (high-intensity, 53; low-intensity, 30; control, 4) and 13 serious adverse events unrelated to the study (high-intensity, 5; low-intensity, 3; control, 5).Conclusions and Relevance: Among patients with knee osteoarthritis, high-intensity strength training compared with low-intensity strength training or an attention control did not significantly reduce knee pain or knee joint compressive forces at 18 months. The findings do not support the use of high-intensity strength training over low-intensity strength training or an attention control in adults with knee osteoarthritis.Trial Registration: ClinicalTrials.gov Identifier: NCT01489462. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index