Stratigraphic architecture and depositional environment of the Paleocene-Lower Eocene aquifers system (Douala onshore basin, SW Cameroon).

Autor: Koah Na Lebogo, Serge Parfait, Bisso, Dieudonnée, Ngo Elogan Ntem, Jeannette, Mvondo Ondoa, Joseph
Předmět:
Zdroj: Journal of Petroleum Exploration & Production Technology; Feb2021, Vol. 11 Issue 2, p549-560, 12p
Abstrakt: The Paleocene-Lower Eocene N'kapa Formation has long been considered as an important groundwater and hydrocarbon resource in the eastern edge of the Douala Basin. The present study's aim is to establish a possible link between the geological nature of this formation and the quality of potential aquifers using Gamma Ray well log, cuttings and outcrops through sedimentology and sequence stratigraphy studies. The results obtained from this study show that: lithofacies are dominated by clays, silts and sands/sandstones; gamma ray electrofacies are funnel-shaped to cylindrical-shaped with some bell-shaped; depositional environments are continental to shallow marine dominated by fluvial and sometimes tidal processes; fluvial channel-fill, tidal channel-fill and delta front bars sands are potential aquifers; sequence stratigraphy analysis reveals two transgressive–regressive cycles of second order (Danian to Selandian and Thanetian to Ypresian), two Highstand System Tracts, one Transgressive System Tract and one Lowstand System Tract; the high-resolution geometry of these sandy/sandstone sedimentary bodies shows that their distribution is linked to the hydrodynamic factors and the topography of the depositional environment. A total of two types of lithological facies of the reservoir levels were defined according to the volume of clay: clean sandstone (0–15%) and low clayey sandstone (15–30%). The gamma ray well log correlation shows that the thickness of the reservoir levels is variable and that the clay content (Vsh%) increases from the NE to the SW. As a result, the best potential aquifers appear to correspond to the fluvial channel-fill sands deposited during the base-level fall of Upper Paleocene age (Lower Thanetian). [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index