High-performance lead free piezoelectric Y2O3-Ba(Ti0.96Sn0.04)O3 nanofibers based flexible nanogenerator as energy harvester and self-powered vibration sensor.

Autor: Chary, Kammari Suresh, Chadalapaka, Durga Prasad, Kumbhar, Chandrashekhar Sadashiv, Panda, Himanshu Sekhar
Předmět:
Zdroj: Journal of Materials Science: Materials in Electronics; Jan2021, Vol. 32 Issue 1, p113-124, 12p
Abstrakt: Efficient, eco-friendly, flexible and high energy output piezoelectric nanogenerator is very much desirable for the development of multifunctional miniaturize devices and sensors. Aspect ratio ~ 102 and boosted energy harvesting attributes of lead-free piezoelectric Y2O3-Ba(Ti0.96Sn0.04)O3 nanofibers have considered for fabricating a flexible nanogenerator. The nanofibers have been synthesized using sol–gel and followed by electro-spinning process. The sintering temperature optimizes at 700 °C to obtain the best quality nanofibers having a diameter in the range from 67 to 132 nm. Rietveld refinement analysis of the X-ray diffraction pattern revealed the substitution of yttrium 30% on titanium (B-site) and 10% on barium (A-site) sites of ABO3 structure. Efforts have made for the development of Y2O3-Ba(Ti0.96Sn0.04)O3 nanofibers based nanogenerator using a simple, cost-effective and scalable approach. The open-circuit voltage (peak-peak) ~ 25 V and the maximum power density ~ 6.5 mW/cm3 have obtained from the developed nanogenerator. Further, the performance of the Y2O3-Ba(Ti0.96Sn0.04)O3 nanofibers based nanogenerator is investigated as a frequency sensor by measuring output voltage as a function of frequency. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index